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S atellite-based surface temperature is referred to
as skin temperature (Dickinson 1994). The National
Research Council (NRC; 2000) and the Inter-

governmental Panel on Climate Change (IPCC;
Houghton et al. 2001) pointed out the urgent need for
long-term remote sensing–based land surface skin
temperature (LST) data in global warming studies to
improve the limits of conventional 2-m World Me-
teorological Organization (WMO) surface air tem-
perature observations (Ta). Currently, the long-term
surface skin temperature dataset is only available over
the ocean [i.e., sea surface temperature (SST), Bates
and Diaz 1991]. Over land, developing such a dataset
has proved more difficult due to the land’s high sur-
face heterogeneities.

Beside being an indicator of climate change, skin
temperature (in particular, its diurnal cycle) is needed
in calculating sensible and latent heat fluxes. Specifi-
cally, sensible heat flux is determined by the instan-
taneous difference between LST and near-surface Ta.
In the conventional bulk equation, the use of daily
averaged LST instead of hourly LST can result in er-
rors up to 100 W m-2.

The National Oceanic and Atmospheric Admin-
istration (NOAA) polar-orbiting satellites have
unique advantages for the LST dataset development
because of a long observation period, global coverage,
easy data access, an abundance of excellent research,
and operational efforts to promote a retrieval process
of the highest quality possible. NOAA’s Advanced
Very High Resolution Radiometer (AVHRR) uses
thermal infrared channels to measure the radiative
emission of the surface. LST can be derived from
AVHRR radiances after removing atmospheric and
surface emissivity effects (Ulivieri et al. 1994; Wan and
Dozier 1996; Becker and Li 1995; Prata et al. 1995;
Kerr 1997). However, AVHRR radiance is measured
only twice per day for most areas. How to interpo-
late these twice-per-day observations into diurnal
cycles has been studied for years and is still an ongo-
ing research topic (Jin and Dickinson 1999, 2000;
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Jin 2000). Furthermore, significant orbital drift in the
afternoon paths of NOAA-7, -9, -11, and -14 hinders
LSTD development (see Fig. 1) because such drift
makes AVHRR skin temperature data temporally in-
homogeneous. In addition, at thermal infrared wave-
lengths, cloud contamination precludes the satellite
from measuring surface skin temperature.

To correct the above-mentioned problems, we
have developed algorithms as described by serial pa-
pers, which are outlined in the next section (Jin and
Dickinson 1999, 2000; Jin 2000; Jin and Treadon
2003). Based on monthly AVHRR LST and these al-
gorithms, we have developed a diurnal cycle dataset,
namely LSTD. LSTD contains monthly mean global
8-km resolution data from 1981 to 1998. Great effort
has also been made to develop a physically meaning-
ful scale-up method to average the 8-km LSTD into a
model grid scale on the order of 100 km.

Validating LSTD is important and challenging. We
used two methods to validate LSTD: one is to
intercompare LSTD with other LST observations, and
another is to use LSTD in climate studies and com-
pare the results with our existing understanding. As
proven in many other cases, the latter is a practical
approach for validating the new dataset. In this pa-
per, we present diurnal, seasonal, and interannual
variations of LST. In the remaining part of this paper,
section 2 outlines the difficulties in LSTD develop-
ments and our approaches. Section 3 shows data,

while section 4 highlights prototype examples of how
to use LSTD in climate study and presents some vali-
dation results. Furthermore, brief concluding remarks
are given in section 5 to discuss the strengths and lim-
its of LSTD and future directions of this work.

DIFFICULTIES AND APPROACHES. Conven-
tional WMO 2-m Ta is a thermodynamically defined
quantity. LST, however, is radiative temperature mea-
sured by a radiometer mounted above the surface.
LST is different from the WMO Ta temperature in
both physical meaning and magnitude, but is closely
related to the latter (Norman and Becker 1995). LST
depends on the infrared wavelength used for the mea-
surement, spectral dependence of the emissivity, angle
at which the measurement is made, state of the sur-
face (roughness, surface type, moisture, vegetation
cover, etc.), and height of the instrument above the
surface. Furthermore, the state of the atmosphere
above (i.e., atmospheric moisture distribution,
amount, and geometrical distribution of cloud cover
and aerosol) also affects the accuracy of LST measure-
ment. Consequently, a wide range of errors may oc-
cur when one trys to measure a single accurate LST
measurement from space.

The major problems that prevent NOAA AVHRR
from being used to develop a long-term LSTD include
orbit drift, uncertainties in skin temperature retrieval
(such as that induced by unknown surface emissiv-
ity), unknown cloud occurrence during a day other
than at observing time, lack of LST diurnal cycle mea-
surement, and/or volcanic eruption. Below we discuss
these problems and our current approaches in turn.

Orbit drift. AVHRR skin temperature measurements
cannot be directly used in climate change studies be-
cause of orbit drift in the NOAA satellites (particu-
larly, NOAA-7, -9, -11, and -14) over the course of these
satellites’ lifetimes (Price 1991; Ignatov and Gutman
1999; Hurrell and Trenberth 1992; Susskind 2001,
personal communication; Jin and Treadon 2003).
Figure 1 schematically illustrates the change in the
NOAA satellites’ northbound equatorial crossing time
due to orbit drift. For example, NOAA-11 initially ob-
served the surface around 1330 local time (LT) in 1989
but, by the end of 1994, its overpass time shifted to
1700 LT. This drift is attributable to the original design
meant to keep satellite instruments out of direct sun-
light (Price 1991). Jin and Treadon (2003) shows that
the orbit drift of the NOAA-7, -9, -11, and -14 series
of satellites results in a significant cooling effect on
LST measurements. This effect is combined with the
signal of the true variations in the climate system and,

FIG. 1. Schematic diagram of the equatorial crossing
time for NOAA-9, -10, -11, -12, -14, -15, and -16. The
y direction is local equatorial crossing time, and the
x direction is time of year. NOAA-7 is not shown here,
but has a similar orbital drift as the afternoon satel-
lites of NOAA-9, -11, and -14. (This figure is provided
by H. T. Lee of Department of Meteorology, Univer-
sity of Maryland.)
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thus, makes the observed LST temporally inconsis-
tent. Applying a physically-based “typical pattern
technique” to remove the orbit drift effect from LST,
Jin and Treadon (2003) utilized a lookup table of typi-
cal land skin temperature diurnal cycles derived from
the National Center for Atmospheric Research
(NCAR) Climate Community Model (CCM) 3
coupled with the land surface model, Biosphere–
Atmosphere Transfer Scheme (BATS). The GCM-
generated typical patterns of the LST diurnal cycle are
functions of vegetation type, season, and latitude, and
are combined with satellite observations to remove the
cooling effect. Applying this methodology to 18 yr of
AVHRR (1981–98) LST observations evidently yields
an improved skin temperature dataset suitable for cli-
mate change study (Jin and Dickinson 2002).

Emissivity in skin temperature retrieval. Remotely sensed
surface temperature is retrieved from thermal emis-
sion measured at various wavelengths at which the at-
mosphere is relatively transparent, that is, in the “win-
dow” region. However, even in the most transparent
spectral windows for clear skies, atmospheric emis-
sion and attenuation are not negligible. Thus, correc-
tions for atmospheric effects are usually required.

The split-window technique (SWT) is the most
widely used correction technique for AVHRR skin
temperature retrieval. First proposed in 1970 for SST
retrieval, SWT assumes that atmospheric absorption
can be approximated as a linear combination of the
radiances measured at two different wavelengths
(Sobrino et al. 1994). This technique was applied to
the land surface with success (Price 1984; Cooper and
Asrar 1989; Becker and Li 1990; Parata et al. 1995;
Wan and Dozier 1996). Originated from the spectral
transfer equation, SWT is usually written in “classi-
cal” form as suggested by Prabhakara et al. (1974, af-
ter Stephens 1994):

LST ª Tb,1 + x(Tb,1 – Tb,2), (1)

where Tb,1  and Tb,2 are brightness measurements at
two thermal number channels, and x is the function
of optical depth in the two channels. A more typical
form of the split-window method in remote sensing is

LST = aT1 + b(T1 – T2) – c, (2)

which was initially presented in Price (1984), where
a, b, and c in this equation are either constants or
functions of surface emissivity.

SWT requires knowledge of accurate land surface
emissivity. However, emissivity is difficult to measure

because, in the real world, it varies with surface veg-
etation density, soil chemical components, and soil
physical conditions such as grain size, as well as view
angle. Unlike the sea surface, where the emissivity at
the wavelength of AVHRR channels 4 and 5 is high
and well known, land surface emissivity is highly het-
erogeneous. As a result, emissivity is one of the larg-
est uncertainty sources in SWT. The currently used
approach is to set two emissivities for channels 4 and
5, respectively, and assume they do not vary over the
globe. Obviously, such an approach is unrealistic and
induces errors in LST retrieval.

Approach to reduce emissivity uncertainty. In LSTD, as
a first-order approximation, we used Moderate Reso-
lution Imaging Spectroradiometer (MODIS)-based
emissivity information in SWT. Land surface emis-
sivities have been retrieved at 5-km grids from pairs
of day-and-night MODIS observations in seven ther-
mal infrared bands with the physics-based day–night
method (Wan and Li 1997). The MODIS LST prod-
uct MOD11B1 provides emissivities in bands 20, 22,
23, 29, and 31–32, from which broadband emissivity
can be inferred (Jin and Liang 2003, manuscript sub-
mitted to J. Climate, hereafter JL03). Evidently, Fig. 2
shows that emissivity has obvious variations over the
globe, because it is a function of soil and vegetation
conditions. In general, emissivity is approximately
0.95–0.97 for vegetated areas and 0.8–0.95 for most
of the bare soil areas. In addition, evident seasonality
is observed at emissivity fields (JL03).

Utilizing MODIS-based emissivity in the LSTD
process is much more realistic than simply assuming
two fixed spectral emissivities for AVHRR channels
4 and 5 over the globe, a treatment that is generally
used in AVHRR LST retrieval due to the lack of emis-
sivity measurements. Nevertheless, some uncertain-
ties still remain. One is that emissivity is a function,
moderately, of soil moisture. During the 1981–98
period, one given area may have experienced differ-
ent rainfall patterns (drought or dry), which resulted
in an emissivity departing from the MODIS-based
typical values. In addition, some areas experienced
land cover and land use changes that made the sur-
face emissivity dramatically different (JL03).
However, our research showed that emissivity made
skin temperature different for each pixel, about 0.7°C
per 1% emissivity uncertainty, which is consistent
with the results of Prata et al. (1995). Yet the global
annual anomaly for LST, which is of most concern in
global change studies, did not get affected much,
probably due to the emissivity-induced skin tempera-
ture variations compensating each other in the glo-
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bal average sense. Furthermore, a relatively small por-
tion of land surface has experienced dramatic land
cover and land use changes; therefore, when averaged
over the globe, land cover–induced emissivity uncer-
tainty can be ignored.

A simple mathematical analysis may help interpret
this point. In our work, we used Ulivieri et al.’s (1994)
split-window algorithm,

LST = a0T4 + b0(T4 – T5) – Dec0 + d0(1 – e!), (3)

where a0, b0, c0, and d0 are constants with c0 = 75 and
d0 = 48. Respectively, T4 and T5 are the brightness tem-
peratures of channels 4 and 5, while De is the differ-
ence between channel-4 and channel-5 spectral emis-
sivities. The average of these two emissivities is
represented by e!.

Then,

(4)

(5)

Because emissivity uncertainty is approximately
0.5% for vegetation and 1% for bare soil (Kerr et al. 1997;

Wan and Dozier 1996), 1% inaccuracy of De and e! may
cause a 0.5°–1.5°C error in LST. Generally, this accu-
racy is comparable with that of surface air temperature
observations or GCM-simulated LST (Jin et al. 1997).

However, it is important to note that the coefficients
in Eq. (3) shall depend on the spectral functions of chan-
nels 4 and 5, which may change with the series of
NOAA satellites. The constants c0 and d0 are examples
given by Uliveri et al. (1994). Also keep in mind that
Eq. (3) does not include important terms, that is, De ×
(T4 + T5) and De × (T4 – T5). Therefore, the effects of
the uncertainty in De should be very large, see Becker
and Li (1990) and Wan and Dozier (1996, their Fig. 5).

Cloud contamination. Cloud contamination causes two
problems in LSTD: an inability to directly measure
LST when the surface is obscured by clouds, that is,
the “cloudy pixel problem,” and the appearance of
cloud formation during the day at times other than
when the measurements were made.

Methods of calculating LST for a satellite cloudy
pixel were designed in Jin (2000) and Jin and
Dickinson (2000). The cloudy pixel treatment used
is a hybrid technique of “neighboring pixel” and “sur-
face air temperature” techniques. The principle of
cloudy pixel treatment is based on the surface energy
balance to infer a cloudy pixel’s LST from the neigh-

FIG. 2. Global distribution of MODIS-observed land surface emissivity. It is broadband emissivity con-
verted from MODIS spectral emissivity using MODTRAN (JL03). Data for oceans, Antarctica, and some
equatorial deserts that are lower than 0.8 are missing values.
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boring clear pixel’s LST and overlying Ta. Soil heat
flux is treated by a conventional force–restore method
for bare soil or short vegetated surfaces, where ground
heat flux is important. For other surfaces where soil
heat flux is less important, heat flux is treated using
the Bowen ratio method. This method is generalized
into other surfaces in Jin and Dickinson (2000). Please
refer to those two papers for details.

Lack of diurnal cycle. In general, polar-orbiting satel-
lites observe a given pixel twice per day. They over-
pass high latitudes more frequently, but land areas
over those areas are relatively small. Therefore, for
most land surfaces, available LST observations are also
available twice per day. In order to interpolate
AVHRR twice-per-day LST into a diurnal cycle, we
have developed a “typical pattern technique” as de-
scribed in Jin and Dickinson (1999). In this approach,
the climatological diurnal cycles of LST are derived
from the most advanced model, NCAR CCM3 BATS,
which served as the information base for the most
likely behavior of diurnal cycle. Typical LST patterns
are functions of land cover, latitude, season, and soil
moisture conditions, and are archived in lookup
tables. Given the geophysical location and land cover
information for one given pixel after the AVHRR LST
is measured, a typical pattern is extracted from the
corresponding lookup table. Various methods are
examined to fit the AVHRR LST into typical diurnal
cycle patterns and to pass the prescribed quality con-
trol. The underlying physical foundation of the typi-
cal pattern technique is that the diurnal cycle of tem-
perature can be viewed as a composite of a daily
average, diurnal periodic component, and random
aperiodic component (noise). With the assumption
that the noise can be ignored, the daily average can
be inferred from twice-per-day satellite measure-
ments; the periodic part can be obtained from mod-
eled climatologies, providing a practical approach for
estimation of the diurnal cycle of skin temperature.
The details of the typical pattern technique and its
applications and validations can be found in Jin and
Dickinson (1999) and Jin and Treadon (2003). The
accuracy of this scheme is estimated to be about 1–
1.5 K (see Jin and Dickinson 1999).

Volcano eruption. During the study period (1981–98),
two large volcanic events dramatically affected the
surface temperatures. The first occurred at El Chichon
of Mexico in April 1982, and the second was at
Mt. Pinatubo in June 1991 in the Philippines.

Volcanic sulfate aerosols change the atmosphere–
surface radiation balance in the following three ways:

by scattering light in the visible wavelength, by reflect-
ing and absorbing in the near-infrared wavelengths,
and by emitting thermal longwave radiation
(Andersen et al. 2001). Therefore, aerosol complicates
atmospheric conditions and causes extra uncertainty
in the AVHRR LST retrieval.

It is beyond our capability to accurately correct the
volcanic aerosol effects because of a lack of adequate
aerosol observations. Instead, we must remove the
pixels that were most likely contaminated by volca-
nic aerosol, which are recognized by large variations
on the leaf area index (LAI) field. LAI data from the
AVHRR for 1981–98 are provided by the Boston Uni-
versity land cover group (Myneni et al. 1997). Figure 3
shows the LAI of July for 1991 and 1990. July 1991
was soon after the eruption of Mt. Pinatubo, while July
1990 is considered a normal year. The differences
observed in the LAI field between these 2 yr over low
latitudes (Fig. 3c) are most likely due to the aerosol
eruption; such large variations are far above the av-
eraged interannual LAI changes for these regions.

View angle. View angle is another possible uncertainty
source for LST retrieval. A difference of 10°C can be
found in LST retrieval depending on the different
view angles (Minnis and Khaiyer 2000; Loeb et al.
2003). The effect is most serious when the combina-
tion of surface slope and instrument scan angle results
in a local view angle greater than 60°. However, the
view-angle effect may be ignored when the angle is
less than 45° (Wan and Li 1997). Similarly, when av-
eraged over several pixels, the view-angle effect is also
reduced (Y. H. Kerr 2002; personal communication).
As discussed above, emissivity may also vary with the
viewing angle (Dozier and Warren 1982; Labed and
Stoll 1991; Rees and James 1992). Currently, no ac-
ceptable method exists to accurately correct the view-
angle effect. Our quality control technique for com-
paring the change of 2-m Ta with that of LST can, to
some degree, remove bad pixels severely affected by
view-angle effect.

All of the above-discussed uncertainty sources are
not independent; for example, cloud contamination
correction needs the typical pattern technique. There-
fore, we cannot assess the final uncertainty of LSTD
by simply statistically adding up all the above uncer-
tainties. Instead, we shall assess the LSTD uncertainty
by comparing it with other independent, reliable, and
resolution-comparable datasets.

DATA. An 18-yr (1981–98) LST diurnal cycle
dataset was developed from AVHRR. The dataset
gives 8-km, monthly average maximum and mini-
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mum skin temperatures for global snow-free land
surfaces.

The afternoon surface LST is obtained from the
NOAA–National Aeronautics and Space Administra-
tion (NASA) Pathfinder AVHRR Land Dataset
(PAL), archived at the NASA Distributed Active
Archive Center (DAAC; Agbu and James 1994).
The AVHRR Land Science Working Group, consist-
ing of university and federal agency scientists, devel-

oped the Pathfinder data.
The input pixels for data
processing was 102,200
from AVHRR global area
coverage (GAC) 1b orbital
data from the NOAA polar-
orbiting satellites with af-
ternoon ascending-node
equator-crossing times.
The total volume of the
10-day composite dataset is
164 gigabytes, which is
archived at the NASA
DAAC and Products and
Services Cooperative (PSC)
facility. The Pathfinder
AVHRR land 10-day com-
posite dataset was derived
from the daily measure-
ment. The composition
process removes much of
the contamination due to
cloud cover present in the
daily dataset. To generate
the 10-day composite
dataset, 8–11 consecutive
days of data are combined.
The pixel with the highest
Normalized Difference
Vegetation Index (NDVI)
for the 10 days was chosen
as the date for inclusion in
the composite. Choosing
the highest NDVI pixel also
eliminated most pixels with
clouds and atmospheric
contaminants. Only data
within 42° of nadir were
used in the composite to
minimize spatial distortion
and bidirectional effect bi-
ases at the edge of a scan
(R. Rank 2001, personal
communication). Eighteen

years (1981–98) of monthly, 8-km global data, includ-
ing channel-1 reflectance, channel-4 and channel-5
brightness temperatures, solar zenith angle, and land
mask were obtained from this dataset. The corre-
sponding land cover dataset was developed by the
land use group at University of Maryland (DeFries et
al. 1998). In addition, a lookup table of NCAR CCM3
BATS-based LST diurnal cycles was used to provide
typical patterns of the LST diurnal cycle for different

FIG. 3. Monthly mean AVHRR-based LAI for (a) Jul 1991, (b) Jul 1992, and (c)
the difference between (a) and (b). See the text for details.
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land cover, seasons, and latitudes (Jin
and Dickinson 1999).

The in situ surface air tempera-
tures at half-degree resolutions from
1981 to 1998 (Jones et al. 1999; New
et al. 1999) were utilized in LSTD de-
velopment and validation. Surface
air temperature was measured at
WMO water-permeable meteoro-
logical shelters. Although this dataset
has long-duration records over land
areas, its sparse coverage and site re-
locations caused uncertainties in the
Ta data (Karl et al. 1994).

We have compared LSTD with
the National Centers for Environ-
mental Prediction (NCEP)–NCAR
50-yr reanalysis (Kistler et al. 2001).
The monthly averaged model output
has a resolution of 2.5° × 2.5°. The
NCEP–NCAR reanalysis, like any other GCM output,
has uncertainties, but the overall geographical distri-
bution proved to be realistic, and, therefore, suitable
to evaluate LSTD.

RESULTS AND DISCUSSIONS. The current
LSTD dataset provides monthly diurnal-averaged skin
temperature, monthly maximum skin temperature
(Tmax), and monthly minimum skin temperature
(Tmin), from 1981 to 1998 at 8-km resolution. The
dataset is scaled up to 0.5° × 0.5° and 5° × 5°, and is
comparable to other surface temperature datasets.
LSTD can be used to study the climatology of land
skin temperature and its diurnal, seasonal, and
interannual variations on both global and regional
scales. Snow screening is done through AVHRR chan-
nel-1 and channel-2 albedo information. In the NASA
DAAC AVHRR pathfinder dataset, there is a cloud
mask. For cloud-free data, high channel-1 and -2 al-
bedo information suggests the snow presence.

In this section, we present some prototype results
to prove the potential values of LSTD. Meanwhile,
validation of LSTD was also presented by comparing
AVHRR LSTD with the surface air temperature,
NCEP–NCAR reanalysis, and TOVS results.

Climatology. Figure 4 is the climatology of LST based
on the average of January and July monthly means.
These data were averaged from 1981 to 1998 at a
5° resolution, which was scaled up from the original
8 km. The snow-covered areas, such as polarward of
60°N, were not retrieved. January and July generally
have the minimum and maximum temperatures in

the annual cycle; therefore, an average of these two
represent the signal of the annual average. The glo-
bal geographical distribution of skin temperature de-
pends on latitude and underlying surface cover. The
maximum temperatures occur at the tropical desert
areas, with values up to 320 K for the Sahara.
Temperature decreases from the tropical to polar re-
gions. These features agree well with those previously
observed by the high-resolution infrared sounder
(HIRS; Jin et al. 1997) and are also consistent with the
NCEP–NCAR reanalysis (not shown). More impor-
tantly, finer-resolution LSTD data can present spatial
structures of temperature with details that are valu-
able for studying regional climate.

Seasonal variation. Figures 5a–5b show the global geo-
graphical distribution of skin temperature at 8-km
resolution in January, April, and July 1988, respec-
tively. The seasonality is evident by the extremely
large values in the Northern Hemisphere desert ar-
eas in July, and in the Southern Hemisphere in
January. In winter, most of the land areas in the
Northern Hemisphere’s mid- to high latitudes are
covered by snow and, therefore, yield no data. The to-
tal number of nonocean pixels over the globe exceeds
2,000,000, of which 90% are snow-free land for July,
and only 65% for January. Therefore, we only study
snow-free land areas (hereafter referred to as land).

If averaged over the same regions, which are
snow-free in January, the monthly mean of LST is
300.48 K for January, 301.89 K for April, and
303.10 K for July. Compared with the global annual
mean surface air temperature of 285.5 K (Sellers

FIG. 4. The AVHRR-observed climatology of diurnal-averaged LST for
July. Here the data are averaged from 1982 to 1998 observations.
“Tskin” stands for LST.



594 APRIL 2004|

1965), this obviously larger global mean skin tem-
perature is partly due to the fact that we do not con-
sider snow- and ocean-covered areas and the physi-
cal differences between skin and air temperatures. In
addition, the global mean uses a 10-day composite of
satellite observations of LST, which tends to select
clear pixels for one location and, thus, underestimates
cloudy days. This causes the overall LST to be a bit
higher than it should. It would be more accurate to
analyze the difference, anomalies, and patterns of
LST rather than the absolute values. April values are
limited to mid- and low latitudes. In July, high lati-
tudes and most areas of the Tibetan Plateau are in-
cluded in the global average; but, temperatures over
most of those areas are relatively low, such as 275 K
in Tibet. Another reason is that Southern Hemi-
sphere land areas in July have lower temperatures
than in April. Data are missing over some African
equatorial areas because the high surface temperature
exceeded the satellite saturation threshold and these
pixels are treated as missing data in skin temperature
retrieval procedure.

One advantage of global LSTD is that it spatially
samples more areas than the network of WMO sta-
tions (National Research Council 2000) and may re-
duce any errors for regions sparsely sampled by
WMO shelters. Another advantage of LSTD is that its
uniformly high resolution makes it easier to study
regional climate. Considerable detail of LST is pre-
sented, with 8 km per pixel resolution, which is par-
ticularly valuable for mountains or deserts. For ex-
ample, by identifying the snow-covered and snow-free
pixels, one could detect the extension of snow cover-
age and its variations over Tibet from satellite obser-
vations, which is difficult to obtain otherwise.

Diurnal variation. The diurnal range (Tmax – Tmin) pre-
sented in Fig. 6 is for July 1988. The largest diurnal
variation is 35°C, which was found at tropical and
subtropical desert areas. The decrease of the diurnal
range toward the pole is evident, but there are large
diurnal variations in the central and east Siberian Pla-
teau polarward of 60°N, as well as in land areas around
Hudson Bay in North America. Artificial straight lines
appear along the latitudes of 30°, 20°, 10°S, etc., which
are most likely caused by the lack of AVHRR night-
time observations. (Our algorithm needs twice-per-day
measurements to derive a diurnal cycle but, in this

5a)

5b)

5c)

FIG. 5. Seasonal variations of the diurnal-averaged
monthly mean LST (K). LST is from LSTD based on
AVHRR observations, as described in the text: (a) Jan
1988, (b) Apr 1988, and (c) Jul 1988, respectively.
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work, the AVHRR nighttime obser-
vations are unreliable. As such, only
daytime measurements are used.)
However, because nighttime skin
temperature varies relatively less than
in daytime, and is similar to that of air
temperature (Jin et al. 1997), air tem-
perature is used whenever available
to reduce the uncertainty. The artifi-
cial lines can be removed after aver-
aging around the surrounding pixels.
But, at this stage of dataset develop-
ment, we prefer to leave it rather than
applying a smoothing technique that
would reduce the resolution of the
dataset.

Further analysis shows that the di-
urnal change is closely related to local
vegetation cover, which is consistent
with other studies (Jin et al. 1997; Jin
and Treadon 2003).

Interannual variability. A long record
of global LST is highly desired for
climate change studies. As a recent
NRC study reported, analyses of sur-
face air temperatures over the globe have shown a
0.2°C per decade increase in the past two decades.
However, satellite observations have shown little or no
increase for this period in the free atmosphere (Na-
tional Research Council 2000). Because surface air tem-
perature is observed by WMO stations, which are not
uniformly sited, can the warming detected from such
observations be reliable? Can it be detected from sat-
ellite surface data? These questions need to be ad-
dressed before we can better understand global warm-
ing and have the ability to predict climate change.

As a prototype for LSTD application, we examined
annual global anomalies of LST changes during 1981–
98 from the AVHRR LST, from 2-m surface air tem-
perature, and from NCEP–NCAR reanalysis (Fig. 7,
also see Jin and Dickinson 2002, their Fig. 1).
Obviously, all three independent datasets show an in-
crease of temperature at the surface. The rates based
on LSTD, in situ data, and the NCEP–NCAR reanaly-
sis are 0.43°C per decade, 0.34°C per decade, and
0.28°C per decade, respectively. The different in-
creases may be due to the differences between skin
and air temperatures, or may be due to different av-
eraging methods (National Research Council 2000).
However, most importantly, the consistency in the
increasing trend among these independent datasets
supports the surface warming theory.

A close comparison of Ts and Ta in Fig. 7 suggests
that the changes of Ts and Ta are not always the same

FIG. 7. Interannual variations of global monthly mean
skin temperature from 1982 to 1998: (a) AVHRR LST,
(b) in situ Ta, and (c) NCEP–NCAR reanalysis of LST.
Data are the average of Jan and Jul. The straight line in
each panel is a linear regression.

FIG. 6. The monthly mean diurnal range based on LSTD maximum
and minimum skin temperatures, respectively. “Tmax” and “Tmin”
stand for the maximum and minimum skin temperatures. The unit is
Kelvin. Diurnal range is calculated as Tmax minus Tmin.
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phase. This is partly due to the physical differences
between these two variables. As Manabe and Stouffer
(1996) stated, “because of the small effective thermal
inertia of the continental surface, the power spectra
of both land surface (LST) temperature and SAT (sur-
face air temperature, Ta) is almost white except at very
short timescales.” Studying the differences between
skin and air temperatures has been a highly desired
research topic (K. E. Trenberth 2002, personal com-
munication), partly due to the uncertainties of
AVHRR data.

LSTD is for snow-free regions, while Ta and the
NCEP–NCAR reanalysis include snow-covered land

areas. This might be another reason for the differences
among the trends of the three datasets. Snow cover-
age varies annually and for a given area. However,
statistical analyses shows that total snow-free land
pixels for one latitude did not change much during
these years, suggesting that for local and regional
scales, snow variations are quite large, but for the glo-
bal mean the impact may be reduced.

El Niño event. Extreme climate events, such as El Niño,
dramatically change the surface temperature by dis-
placing atmospheric circulation systems and by
teleconnection. Examining whether LSTD can cap-

ture these changes, on one hand, can
validate orbit drift correction. On the
other hand, it can build some confi-
dence in using LSTD to illustrate the
high heterogeneities of land surface
temperature. Here we compare the
LSTD with the NCEP–NCAR re-
analysis. LSTD data are a diurnally
averaged monthly mean, which is
comparable with NCEP–NCAR
model simulations. Figure 8 shows
the difference of 1998 and 1997 July
skin temperature. July 1998 is the
transition time from severe El Niño
to La Niña events. Large positive
changes were observed in various
land surfaces, including central
Eurasia, the southeast United States,
northwest North America, and the
north of Australia, suggesting that
these regions were warmer in 1998
than in 1997. All of these warming
centers are observed on LSTD. There
are dissimilar areas also. For ex-
ample, although the NCEP–NCAR
model has captured the cold in south
Australia and warmth in north Aus-
tralia, south Australia is modeled too
warm compared to the observations.
These inconsistencies imply that im-
provements are needed, probably in
both LSTD and NCEP–NCAR
reanalyses.

8a)

8b)

FIG. 8. Global distribution of annual
variations of the diurnal-averaged LST
for Jul 1998 minus 1997. “Tskin” stands
for LST: (a) AVHRR and (b) NCEP–
NCAR reanalysis, respectively.
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Regional variations. Controlled by the surface energy
budget, LST is determined by surface insolation.
Therefore, it has obvious seasonal variations and lati-
tude dependence, which corresponds to surface in-
solation. Seasonality and latitude dependencies are
evident from LSTD. The zonal-mean LST anomalies
during 1981–98 (Fig. 9) show that low latitudes may
have larger LST variations than high latitudes, with
anomalies ranging from +2° to –5°C for 0°–20°N, and
only +2° to –2°C for 60°–80°N. Of course, the volca-
nic effect may enhance the natural variation signal at
low latitudes. In addition, in July the variations of LST
are not as significant as in January (not shown). These
results are consistent with those from the GCM, once
described in Schneider and Dickinson (1974) as a
positive lapse rate feedback.

Land–biosphere–atmosphere interactions are re-
sponsible for regional climate changes. High-resolu-
tion satellite data can illustrate the land cover impacts
on LST. Figure 10 shows LST anomalies over desert
and semidesert areas at low latitudes. Although the
trend may not be statistically significant, desert areas
show larger interannual variations than those of other
land cover areas. Furthermore, the diurnal range of
skin temperature decreases during 1982–98
(Fig. 10b), which is similar to the globally averaged
diurnal range (Jin and Dickinson 2000, their Fig. 2b).

Further validation. Validation is extremely important
for a new dataset such as LSTD. It is also a difficult
task because there is no global, in situ ground truth
data available for LSTD validation. Nevertheless, com-
paring LSTD with other satellite observations and
GCM simulations shall shed light on the data qual-
ity. We have examined LSTD using the TOVS skin
temperature observations, WMO surface air tempera-
ture, and NCEP–NCAR reanalysis, as previously pre-
sented. In addition, Fig. 11 compares the zonal aver-
age of AVHRR LSTD and NCEP–NCAR LST for July
1985 and 1988, respectively. Presenting these two
years is partly to examine the corrections of orbit drift,
because 1985 is the beginning of the lifetime of
NOAA-9, and 1988 is the transaction time of NOAA-
9 and -11. Obviously, Fig. 11 shows that over most
land areas, the zonal mean of LST between AVHRR
and NCEP–NCAR coincide, except over tropical ar-
eas. Such a discrepancy is at least partly due to the
problematic simulation of NCEP–NCAR over tropi-
cal areas (Trenberth et al. 2001).

Corresponding TOVS LST is used to validate the
monthly, seasonal, and interannual variations of LST.
Comparing TOVS LST with AVHRR LST shows
overall agreement between the two datasets (Fig. 12).

Both AVHRR and TOVS have extreme values of LST
in tropical desert areas and the southwest United States.
The minimum values are observed over the Tibetan
Plateau, with TOVS values as low as 260–270 K.

CONCLUDING REMARKS. A long-term skin
temperature diurnal cycle dataset was developed from
AVHRR observations. This dataset covers global
snow-free land areas and spans from 1981 to 1998. As
presented, this 18-yr dataset can be used to estimate
the changes of skin temperature, to study interactions

FIG. 9. Comparison of the zonal-mean LST anomalies
during 1981–98, for 0°–20°N and 60°–80°N respectively.
LST is the diurnal-averaged monthly mean from
AVHRR-based observations.

FIG. 10. LST anomalies over desert and semidesert ar-
eas at low latitudes. Data are from AVHRR-based
LSTD: (a) diurnal-averaged monthly mean observations
and (b) diurnal range of LST, namely, monthly maxi-
mum LST minus monthly minimum LST.



598 APRIL 2004|

in the land–biosphere–atmosphere system, and to
evaluate model simulations.

The value of LSTD depends on its accuracy, dura-
tion, and the possibility of applying this dataset to cli-
mate studies. Validating LSTD is an ongoing task in
which LSTD is compared with other LST observa-
tions. However, Hall et al. (1992) reported difficulty
in applying the skin temperature from fine-resolution
satellite observations to field observations. A several
degree difference was reported due to scaling and
retrieval problems. Alternatively, as proven in many
other cases, using LSTD in climate studies and com-
paring the results with existing understanding is also
a practical approach to validate the dataset.

The LSTD is valuable for model development.
Perhaps the most sensible approach would be to use
satellite skin temperatures for model validation by
directly comparing modeled and observed skin tem-
peratures as demonstrated in Jin et al. (1997). The
insights gained into physical processes could conse-
quently improve the corresponding model parameter-
ization scheme (Crosson et al. 1993; Smith et al. 1993).

Unlike Ta , which has been frequently used to
compare with observations, the NCEP–NCAR LST
has not been adequately validated over land and, thus,
should not be assumed as good enough to validate
other models’ LST. In fact, the NCEP–NCAR LST is
a diagnostic variable that is determined by the land
surface model’s surface ground and leaf tempera-
tures. The latter two need to be validated. LSTD is

better than the NCEP–NCAR reanalysis in terms of
both spatial resolution (8 km and up) and more in-
formation of geographical distribution.

As a prototype of LSTD application, we examined
annual global anomalies of LST changes during 1981–
98 from LSTD, from 2-m surface air temperature, and
from the NCEP–NCAR reanalysis (Fig. 6). Obviously,
all three independent datasets show an increase trend
of temperature at the surface. The rates based on
LSTD, in situ data, and the NCEP–NCAR reanalysis
are 0.43°C per decade, 0.34°C per decade, and 0.28°C
per decade, respectively. The consistency among these
independent datasets is encouraging with regard of
the quality of LSTD.

The LSTD is not meant to replace other existing
datasets. Rather, it can serve as an independent,
unique, and supplementary resource for climate

FIG. 11. Comparison of zonal mean AVHRR-based LST
with NCEP–NCAR reanalysis for (top) Jul 1985 and
(bottom) Jul 1988 for land areas only.

FIG. 12. Comparison of (a) TOVS skin temperature with
(b) AVHRR-based LSTD diurnal-averaged LST. Both
AVHRR and TOVS data are the monthly mean for Jul
1993. The resolution of AVHRR LSTD data is 0.5° × 0.5°
and TOVS data is 1° × 1°. We purposely keep the ocean
LST information to show the strength of TOVS data,
that is, it covers high latitudes and ocean surface.
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change studies. These long-term observations can be
used to study ENSO impacts on land surface or vegeta-
tion–atmosphere–land surface interactions. For ex-
ample, Jin and Zhang (2002) projected LAI anomalies
on Niño-3 and showed the large correlation between
LAI and El Niño over North America high latitudes.
Meanwhile, calculating the correlation of LAI and skin
temperature anomalies help illustrate the local vegeta-
tion–land cover impacts on skin temperature variations.

The accuracy of LSTD is related to its temporal and
spatial resolutions. Based on our analyses, a less than
0.2 K per decade uncertainty is found for interannual,
global anomalies (trend, Fig. 7; and see Jin and
Dickinson 2002 for statistical analysis), less than half
a degree for the monthly zonal mean for most regions,
except over tropical areas (Fig. 11), and less than 1 K
for the model grid, monthly mean for most areas
(Figs. 8 and 12). The uncertainty can be up to 5 K for
some tropical areas such as east of South America and
the mountain areas of Tibet (Fig. 12). More impor-
tantly, we recommend that LSTD is more suitable for
climate study than for research on a daily pixel level,
and the differences of LSTD, instead of the absolute
values, should be used to study patterns and diurnal,
seasonal, and interannual variations.
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